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Abstract. A new type of duality symmetry is introduced in the momentum space, by Fourier
transforming a system ofN -form abelian free fields. Exploiting the complex nature of the mode
amplitudes, it is shown that the corresponding duality group is bothZ2 andSO(2) for all even
dimensions. The connection with the conventional duality symmetry where the group isZ2 (SO(2))
for D = 4k + 2(4k) spacetime dimensions is discussed in detail.

1. Introduction

The conventional interpretation of duality symmetry, as briefly reviewed below, leads to distinct
Z2(SO(2)) groups in 4k + 2(4k) dimensions. This shows that there is a basic difference in the
duality transformations, which is among the potentials, in these dimensions. In this paper, we
introduce a new type of duality symmetry in the theory ofN -form abelian free fields defined
in any even dimensions. The duality transformations are not among the potentials; rather
these are among the mode amplitudes obtained after Fourier decomposing the basic potentials.
Taking advantage of the complex nature of the mode amplitudes, it is possible to invoke a
duality symmetry that manifests both theZ2 as well as theSO(2) groups, irrespective of the
dimensionality of spacetime.

Historically (for recent reviews see [1]), the source free Maxwell’s equations were the
first to display the property of duality symmetry which involves a formalSO(2) rotation, apart
from a trivial scale factor, in the space of electric and magnetic fields,(

E

B

)
→
(
E′

B′

)
=
(

cosθ sinθ
− sinθ cosθ

)(
E

B

)
(1.1a)

or, equivalently, aU(1) transformation for the combination(E + iB)

(E + iB)→ (E′ + iB′) = e−iθ (E + iB). (1.1b)

Using the language of differential 2-formsF and its dualF̃ , defined as

F = Ei dx0 ∧ dxi + 1
2Fij dxi ∧ dxj

F̃ = −Bi dx0 ∧ dxi + 1
2F̃ij dxi ∧ dxj (1.2)
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with Bi = 1
2ε

ijkFjk andEi = F0i = 1
2ε

ijkF̃jk being the components of the magnetic and
electric fields respectively, (1.1a) is recast as(

F

F̃

)
→
(
F ′

F̃ ′

)
=
(

cosθ − sinθ
sinθ cosθ

)(
F

F̃

)
. (1.3)

As is well known this is a symmetry of the equations of motion dF = 0 and dF̃ = 0 only,
but not of the actionS = ∫ d4x tr(FF − F̃ F̃ ). Incidentally, this analysis is generic for any
abelianN = 2k-form fields inD = 4k dimensions, for integralk.

The corresponding situation in two dimensions (which is generic forD = 4k + 2
dimensions, for integralk) has also been studied. In the case of the free massless scalar
field (which can be regarded as a zero form potential) in two dimensions, the equations of
motion are invariant underZ2 × SO(1, 1) transformations, although the action is not. This
difference from the four-dimensional example is attributed to the basic identities governing
the dual operations

˜̃
F = −F ; D = 4k ˜̃

F = F ; D = 4k + 2. (1.4)

To elevate the duality at the level of the action, it was naturally imperative to define the relevant
transformations in terms of the basic variables which are the associated potentials rather than
the field tensors. This is possible by rewriting the action in terms of two potentials. Incidentally,
the introduction of a second potentialÃ is essentially tied to the fact that the dual fieldF̃ is
closed by the equation of motion, so that one can writeF̃ = dÃ as an on-shell relation. It
was also shown that the duality groupsG preserving the invariance of the action were the
subgroups of those found earlier that preserve the invariance of the equations of motion. In
fact the former was obtained by taking an intersection withO(2), the group of invariance of
the energy–momentum tensor(Tµν ∼ (FµFν + FνFµ)) (here the unwritten indices have been
summed over). Specifically, these were [2, 3]

G = SO(2); D = 4k G = Z2; D = (4k + 2). (1.5)

It is clear, therefore, that a fundamental difference is observed in the study of duality symmetry
in 4k and 4k + 2 dimensions.

To put the above discussion in a proper perspective, it might be useful to mention that the
original study of duality symmetry in the context of the equations of motion can be understood
in an alternative way that does not involve these equations at all. Indeed, it is simple to check
that by only demanding the invariance of the dual operationF → F̃ under some transformation
(like (1.3)) yields theSO(2) group for four dimensions. Consider, for instance, the following
transformation(

F

F̃

)
→
(
F ′

F̃ ′

)
=
(
p q

r s

)(
F

F̃

)
. (1.6)

If we demand that the duality condition is preserved under this transformation, i.e.F̃ ′ is indeed
the dual ofF ′, then it follows thatp = s andq = −r. Hence, up to a trivial scale factor,
the transformation matrix in (1.6) can easily be identified with the standardSO(2) matrix
(1.3). The same logic also holds for two dimensions where the relevant group is found to
beZ2 × SO(1, 1) instead ofSO(2). Hence the study of duality symmetry truly becomes
meaningful only with regard to the respective actions.

The point to be emphasised here is that this duality symmetry refers to the ordinary space
duality. The duality is also valid in the corresponding Fourier-transformed quantities. By this
we mean that (1.6) can be expressed (for four-dimensional (4D) Maxwell theory for example)
in terms of potential one formsA(x) = Aµ dxµ andÃ(x) = Ãµ dxµ as(

A(x)

Ã(x)

)
→
(
A′(x)
Ã′(x)

)
=
(
p q

r s

)(
A(x)

Ã(x)

)
(1.7)
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which in turn can be written as(
Aµ(k)

Ãµ(k)

)
→
(
A′µ(k)
Ã′µ(k)

)
=
(
p q

r s

)(
Aµ(k)

Ãµ(k)

)
(1.8)

whereAµ(k) is obtained from

Aµ(x, t) = 1√
V

∑
k

eik·xAµ(k, t) (1.9)

by an inverse (spatial) Fourier transformation. Similar relations also hold forÃµ(k).
Incidentally, it turns out thatA(k) and Ã(k) refer to the two polarization states of the
electromagnetic potential.

The purpose of the paper is to show that, apart from the above duality symmetry (1.8), one
can introduce a different duality symmetry in momentum space, making use of the fact that
the Maxwell field is equivalent to an assembly of an infinite number of decoupled (complex)
harmonic oscillators (HO). This duality symmetry is therefore not among the potentials; rather
it involves the mode amplitudes. Besides, the study of duality symmetry at the level of
individual modes is interesting in its own right, as we know that the particle content of such free-
field theories are identified with the corresponding excitations in various modes. Incidentally,
the duality group for the complex harmonic oscillator† which is not covered in the literature,
can be either SO(2) orZ2 transformation in an enlarged configuration space, labelled in the
appropriate manner. As each mode in the Maxwell field represents an HO, the same analysis
of HO can be carried out for each mode of the Maxwell field. We can thus show that in the
momentum space the Maxwell field displays bothSO(2) andZ2 symmetries. The same holds
for otherN -form abelian fields in appropriate dimensions.

A comparison with duality symmetry discussed here with the conventional one has
been done forD = 4 Maxwell theory. It is shown that the duality generators for the
SO(2) transformations in the two cases are distinct. The exact relationship between the
two infinitesimal duality symmetry transformations has been worked out.

The paper is split into five sections. In section 2, duality symmetry in the complex HO
is analysed. Sections 3 and 4 describe the corresponding analysis for the scalar and Maxwell
theory, including the comparison with the HO formulation. In section 5 we discuss duality
symmetry in Kalb–Ramond fields. Finally some concluding remarks are made in section 6.

2. Duality in the complex harmonic oscillator

Let us next consider the example of the ‘complex’ HO. They occur naturally as the Fourier
modes of several free-field theories and thus will be useful for the subsequent analysis. Besides,
this is an instructive example where distinct variable redefinitions are possible which show a
reversal of roles of the duality transformations. Consider, therefore, the following Lagrangian

L = 1
2(φ̇
∗φ̇ − ω2φ∗φ). (2.1)

Linearizing the above Lagrangian, by introducing additional variablesπ andπ∗ in an enlarged
configuration space, one gets

L = 1
2ω(π

∗φ̇ + πφ̇∗)− 1
2ω

2(π∗π + φ∗φ). (2.2)
Labellingφ = q1 andπ = q2 and then again in the reverse order i.e.φ = q2 andπ = q1, the
following ‘chiral’ forms of the Lagrangian are obtained,

L±(Q) = ± 1
2ωQ

†εQ̇− 1
2ω

2Q†Q (2.3)

with Q = (q1

q2

)
.

† The real case has been analysed in [4–6].
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The occurrence of theε matrix indicates that the LagrangiansL± are invariant under the
SO(2) transformationQ → R+Q. Similarly, the improper rotationsR− induce a swapping
L+ ↔ L−. Using Noether’s prescription, the conserved charge for theSO(2) symmetry is
found to be

G = − 1
2ωQ

†Q. (2.4)

To show that this indeed generates the infinitesimal duality transformation

δqα = θ{qα,G} = θεαβqβ (2.5)

recourse is taken to the fundamental brackets

{qα, q∗β} = −
2

ω
εαβ (2.6)

following from the symplectic structure of the first-order Lagrangian (2.3). Now consider the
following alternative way of relabelling the(φ, π) variables in (2.2)

φ = q1 : π = iq2 (2.7a)

and then as

φ = q2 : π = −iq1 (2.7b)

which yield the following structures for the Lagrangians,

L±(Q) = 1
2(±iωQ̇†σ 1Q− ω2Q†Q) (2.8)

whereσ 1 = (0 1
1 0

)
is the first Pauli matrix. These Lagrangians are invariant under a discreteZ2

transformationQ → σ 1Q, while the swappingL+ ↔ L− is effected byQ → εQ. Clearly
therefore, the roles of proper and improper rotations are reversed from the previous case.
Compared to the real example [4, 6], the complex HO has a richer symmetry structure that is
essentially tied to the complex nature of the variables, allowing for alternative redefinitions.

To complete the analysis, the soldering of the complex ‘chiral’ oscillators (2.3) is done
to reproduce the complex HO. The soldering mechanism, suggested in [8] and extensively
developed in [7, 9, 10], is a means of obtaining fresh equivalences by starting from two distinct
theories displaying the opposite aspects of some symmetry-like chirality, duality, etc. In the
present context, we start fromL+(Q) andL−(R), regarded as functions of distinct variables
Q andR, respectively. Consider a transformation

W → W ′ = W + η. (2.9)

Under this, (2.3) transforms as

δL±(W) = η†εJ± − J±†
εη; W = (Q,R) (2.10)

where,

J±(W) = ± 1
2ωẆ + 1

2ω
2εW. (2.11)

Introduce a (column) matrix-valued variableB transforming as

δB = −εη. (2.12)

Then the first iterated LagrangianL(1)± , defined as

L
(1)
± = L± − B†J± − (J±)†B (2.13)

can be shown to transform as

δL
(1)
± = ∓ 1

2ω(B
†η̇ + η̇†B)− 1

2ω
2(B†εη − η†εB). (2.14)
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Assuming thatB does not depend onW , one finds

δL(1)+ (Q) + δL(1)− (R) = −ω2(B†εη−η†εB). (2.15)

Now the soldered LagrangianLs is defined as

Ls = L(1)+ (Q) +L(1)− (R)− ω2B†B. (2.16)

Using (2.12) and (2.15), one can easily show thatLs is invariant

δLs = 0 (2.17)

under the above transformations (2.9) and (2.12). Eliminating the auxilliary variablesB and
B† from (2.16), by using the corresponding equations of motion, one obtains

Ls = 1
2(Ṡ

†Ṡ − ω2S†S) (2.18)

where

S = 1√
2
(Q− R) (2.19)

is a ‘gauge invariant’ combination of variables. Thus starting with chiral forms of Lagrangians
L+(Q) andL−(R), given as functions ofQ andR respectively, we have constructed a soldered
LagrangianLs , which is a function of the differenceS (2.19) only. Thus the bi-dimensional
complex HO is manifestly invariant under the simultaneous transformation,δQ = δR = η.
Note that we have aU(2) symmetryS → US (hereU is aU(2)matrix) in (2.18) in contrast to
theO(2) symmetry found for the real HO. Once again, this manifests a richer structure of the
complex HO. Here we would like to mention that the same form of soldered Lagrangian (2.18)
is obtained if we solder the Lagrangians in (2.8). Using these concepts, the duality symmetry
in the context of free-field theories is better understood, as evolved in the subsequent sections.

3. Massless scalar fields in 1 + 1 dimensions

The HO is quite ubiquitious in field theoretical models. This is because a large number of
free-field models can be thought of as an assembly of an infinite number of free HOs, each
designated by the mode vectork. In this section, we shall carry out the mode analysis of the
massless scalar fields in the(1 + 1) dimension and study the duality symmetry through these
modes, simultaneously revealing the close connection with the HO analysis carried out in the
previous section.

The Lagrangian of the model is given by

L = 1

2

∫
dx (φ̇2(x)− φ′2(x)). (3.1)

Putting the system in a box of lengthL, one can make the Fourier decomposition of the real
scalar fieldφ(x) as

φ(x) = 1√
L

∑
k

eikxφk(t). (3.2)

Herek represents the space component of a 2-vectorkµ, satisfyingkµkµ = ω2
k − k2 = 0 and

φ∗k = φ−k. Substituting (3.2) in (3.1), one gets

L =
∑
k

Lk (3.3a)

with

Lk = 1
2(φ̇
∗
k φ̇k − ω2

kφ
∗
k φk) (3.3b)
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representing a ‘complex’ HO for thekth mode (see (2.1)), asφk is a complex number in
general. Thus one can proceed just as in the preceding section to linearize the Lagrangian and
then relabel the variables in the appropriate manner to obtain the following duality invariant
forms of the Lagrangian,

Lk±(Qk) = ± 1
2ωkQ

†
kεQ̇k − 1

2ω
2
kQ

†
kQk (3.4a)

and

Lk±(Qk) = 1
2(±iωkQ̇

†
kσ

1Qk − ω2
kQ

†
kQk) (3.4b)

withQk =
(
q1k

q2k

)
. Note that these expressions are just (2.3) and (2.8), but with only an additional

subscriptkth mode index. It is clear that while the duality group isSO(2) for (3.4a), it is
Z2 for (3.4b). Recall that, expressed in terms of the original scalar fields, only the latter is
manifested [2, 3, 7].

We can now proceed with the soldering of these two LagrangiansLk+(Q) andLk−(R),
for two independent variablesQ andR, as we have done in the previous section to finally get

Lsk = 1
2(Ṡ

†
k Ṡk − ω2

kS
†
k Sk) (3.5a)

where

Sk = 1√
2
(Qk − Rk) (3.5b)

is the ‘gauge invariant’ combination of variablesQk andRk. Note that the above result follows
irrespective of whether one starts from (3.4a) or (3.4b). The soldered Lagrangian, which
is just the expression for thekth mode, is thus manifestly invariant under the simultaneous
transformation,δQk = δRk = ηk. At this stage we can sum over all the modes to get the
complete soldered LagrangianLs as

Ls =
∑
k

Lsk =
1

2

∑
k

(Ṡ
†
k Ṡk − ω2

kS
†
k Sk). (3.6)

Using the inverse Fourier transform, this can be easily shown to yield

Ls = 1

2

∫
dx ∂µS

†(x)∂µS(x) (3.7)

where

S(x) = 1√
L

∑
k

eikxSk(t) (3.8)

is a doublet of real scalar fields. This is again given in terms of the difference

S(x) = 1√
2
(Q(x)− R(x)) (3.9)

whereQ(x) andR(x) are obtained fromQk andRk using expressions similar to (3.8).
On the other hand, as shown in [7], the original model (3.1) can be re-expressed, after a

suitable redefinition of variables, in a linearized form as

L±(8) = 1
2(±8̇T σ 18′ −8′T 8′) (3.10)

where8 = (φ1

φ2

)
. The matrix swappingL+ ↔ L− is ε. Again as shown in [7], the soldering of

L+(Q) andL−(R), whereQ andR denote the independent fields corresponding to the positive
and negative components of the Lagrangian given in (3.10) yields

Ls = 1
2∂µS

†∂µS (3.11)

whereS is identical to (3.9). Note that this is precisely the Lagrangian density appearing in
(3.7). This shows that writing the original model in the chiral form and then soldering, as in
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[7], yields the same result as that obtained by first making a Fourier decomposition (3.2) and
then expressing this Lagrangian (a ‘complex HO’) in a linearized chiral oscillator formLk±
(3.4), next soldering to getLsk (3.5), followed by a final summation over all the modes to get
(3.7). Schematically, this can be represented as†

L→ L± → Ls

↓ ↑ ↑
Lk → Lk± → Lsk.

It may be recalled that (3.10) is the conventional form of the duality symmetric action in
two dimensions [2, 3, 7]. Nevertheless, expressed in terms of its modes, the massless scalar
theory (3.3b) gets mapped to the complex HO, thereby manifesting either theZ2 or theSO(2)
symmetry depending on the variable redefinitions. To establish compatibility with (3.10) where
only theZ2 symmetry is revealed, recall that (3.10) was obtained [4] by rewriting (3.1) in its
linearized version

L = 1
2(P φ̇ − Ṗ φ − P 2 − φ′2) (3.12)

whereP is an additional variable in an extended configuration space. In order to get the form
L+ (3.10) for example, one has to make the following relabelling

φ = φ1 (3.13a)

P = φ′2. (3.13b)

Incidentally, the existence of the second scalar fieldφ2(x) is understood in the following
manner. Sinceφ(x) = φ1(x) can be regarded as a 0-form potential, the field 1-form

F = dφ1 = (φ̇1 dt + φ′1 dx)

has the dual

F̃ = −(φ̇1 dx + φ′1 dt)

which is closed on-shell, so that in the absence of any non-trivial topology it must be exact too.
In other words there exists another functionφ2(x) satisfyingF̃ = − dφ2. As can be easily
seen, hereP = φ̇1 = φ′2.

To get the formL−, the relabelling has to be done in the reverse order, i.e. (φ = φ2:
P = φ′1). In the rest of this section, we shall only considerL+ for convenience.

At this stage, we Fourier analyse the fieldφα(x) (α = 1, 2) andP(x) as

φα(x) = 1√
L

∑
k

eikxφαk(t) (3.14)

P(x) = 1√
L

∑
k

eikxkπk(t). (3.15)

We can easily see that (3.13b) implies, in terms of momentum space variables,

πk = iφ2k. (3.16)

Again, reality ofφα(x) implies

φ∗αk = φα(−k) (3.17a)

π∗k = −π−k. (3.17b)

One can then proceed, as for the model (3.1), to obtain two equivalent forms forLk, starting
from (3.12). Using the Fourier decomposition of bothφ andP fields, we get

Lk = 1
2[k(πkφ̇

∗
k + π∗k φ̇k)− ω2

k(φ
∗
k φk + π∗k πk)]. (3.18)

† Note an important distinction between the two rows of the diagram. While the first manifests only the familiarZ2
symmetry, the second is associated with bothZ2 andSO(2) symmetries.
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Note that in the Fourier decomposition of the fieldP(x) in (3.15), we had intentionally
incorporated an additional factor ofk in front of πk, so that the form of (3.18) looks exactly
like that of ‘complex’ HO (2.2). Also note that the relationω2

k = k2 was used crucially in
these expressions, indicating that the above structure for the Lagrangian is strictly valid for
massless fields.

Mimicing the steps of the complex HO, it is simple to show that the above Lagrangian
displays either theZ2 or SO(2) symmetry, based on a suitable relabelling of fields. The
generator for the latter can be obtained simply by generalizing (2.4) to get

Gk = − 1
2ωkQ

†
kQk (3.19)

whereQk is the doublet
(
φk
πk

)
.

At this stage, we would like to make an observation. The conventional duality symmetry
for L± is given by the discrete groupZ2 acting on the space of doublet of potentials

(
φ1(x)

φ2(x)

)
or equivalently in the Fourier transformed doublet

(
φ1k

φ2k

)
, i.e. in the momentum space. On the

other hand, the duality group we have introduced acts on the doublet
(
q1k

q2k

) = (
φk
πk

) = (
φ1k

iφ2k

)
and is therefore distinct from the conventional one. Some general remarks are now in order
distinguishing more clearly the (momentum space) duality symmetry given here and the
conventional (coordinate space) duality symmetry. Consider, for example, massive scalar
fields inD-dimensional spacetime,

L =
∫

dD−1x
1

2
(∂µφ∂

µφ −m2φ2). (3.20)

It can now be easily seen that only the massless case inD = 2 admits a duality invariant
chiral form of the Lagrangian (3.10). For all other dimensionsD, the above Lagrangian (3.20)
(massive or massless) does not admit a duality invariant chiral form. In these cases, the scalar
field φ(x) can no longer be regarded as a 0-form potential and the correspondence with the
theory ofN -form abelian fields breaks down. Consequently a (conventional) duality invariant
chiral form ofL, that would be a counterpart of (3.10), cannot be written down. On the
contrary, this model too can be re-expressed, upon Fourier analysis, just as in (3.3), with

ω2
k = k2 +m2. (3.21)

It can then be linearized and relabelled appropriately to get similar expressions as that of (3.4a)
and (3.4b), exhibitingSO(2) andZ2 symmetries, respectively. Note that this can be done for
anyD, including oddD. Thus the duality transformations in the momentum space still exist
in these cases, in spite of the absence of the duality symmetry of fields in the configuration
space.

4. Maxwell field in 4D

In this section we shall carry out a similar analysis for the free Maxwell field. But because of
the inherent gauge invariance of the model, we shall not start with a Fourier analysis right at
the beginning. Rather the Gauss constraint of the model will be imposed strongly to isolate the
physical degrees of freedom. Mode analysis then reveals the HO structure just as in the scalar
case with the difference that to each modek there are two orthogonal transverse oscillators.
Following the HO example, this model is then linearized and written in ‘chiral’ forms. We
then carry out the soldering of the ‘chiral’ forms of the Lagrangian followed by a summation
over all the modes, to get hold of the final soldered Lagrangian. This part is just the same as
we did for the scalar field. To that end, consider

L = − 1
4FµνF

µν = 1
2(E

2 −B2) (4.1)
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whereEi = (∂0Ai − ∂iA0) andBk = ε ijk∂iAj are the electric and magnetic fields. At this
stage, the Gauss constraint (∇ ·E = 0) can be solved forA0 yielding

A0 = ∂0

∇2
(∇ ·A). (4.2)

Time preservation of (4.2) is guaranteed by the equations of motion. Hence it is possible to
eliminateA0 from the Lagrangian by using (4.2) to get [11],

L = 1
2[(ȦT )2 − (∇ ×AT )2] (4.3)

where the longitudinal componentAL drops out automatically and only the physical
(transverse) componentAT survives. In terms of the gauge fieldA, this is given by

ATi = PijAj =
(
δij − ∂i∂j∇2

)
Aj (4.4)

withPij being the projection operator satisfyingP 2 = P . Therefore the Fourier decomposition
has to be carried out keeping this in mind. Hereafter, we shall omit the superscript (T ) from
AT and write simplyA.

So finally carrying out a Fourier decomposition

A(x) = 1√
V

∑
eik·xAk(t). (4.5)

Note thatAk(t) can be written as

Ak(t) =
2∑
λ=1

Akλ(t)ελ(k) (4.6)

whereελ(k) are the polarization vectors orthogonal tok (k · ελ(k) = 0). This orthogonality
projects out the transverse component of the vector potential.

As expected, the LagrangianL(= ∫ d3x L) can then be written as

L =
∑

Lk (4.7)

with

Lk = 1
2(Ȧ

∗
k · Ȧk − ω2

kA
∗
k ·Ak). (4.8)

In comparison with (3.3b), we can see thatAk are now 3-vectors inC3 in contrast toφk, which
are just complex scalars.

Thus one can proceed just as in the scalar fields to linearize (4.8) by invoking additional
vector-valued variablesΠk and its complex conjugates in an enlarged configuration space, to
write

Lk = 1
2ωk(Π

∗
k · Ȧk + Πk · Ȧ∗k)− 1

2ω
2
k(Π

∗
k ·Πk +A∗k ·Ak) (4.9)

associated with each modek. Parametrizingq1k = Ak andq2k = Πk and then in the reverse
order, i.e.q2k = Ak andq1k = Πk, one gets the following ‘chiral’ forms of the Lagrangian

Lk±(Qk) = ± 1
2ωkQ

†
kε · Q̇k − 1

2ω
2
kQ

†
k ·Qk (4.10)

whereQk is the doublet
(
q1k

q2k

)
. The above Lagrangian is invariant, mode by mode, under the

usualSO(2) transformationQk → εQk. Similarly, under the transformationQk → σ 1Qk

the LagrangiansLk+ andLk− are swapped into one another.
Alternatively, parametrizing,

Φ1k = Ak Φ2k = −iΠk (4.11)
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and then in the reverse order, the Lagrangian (4.9) is expressed in the chiral form as

Lk± = 1
2(±iωkΦ̇

†
k(t)σ

1Φk(t)− ω2
kΦ

†
k(t)Φk(t)) (4.12)

which reveals theZ2 invariance, instead of the usualSO(2). The analogy with the ‘complex’
HO is now complete. Not surprisingly, therefore, a similar equation (3.18) has also occurred
earlier in the case of scalar field. The only additional feature in this case is thatΦk =

(Φ1k

Φ2k

)
is

now a doublet of vector fields.
It is quite straightforward to solder the two ‘chiral’ forms of the LagrangiansLk+(Qk) and

Lk−(Rk) in the lines of the scalar case to get

Lsk = 1
2(Ṡ

†
k · Ṡk − ω2

kS
†
k · Sk) (4.13a)

where,

Sk = 1√
2
(Qk −Rk) (4.13b)

is a doublet ofvectors. Contrast this with (3.5b), whereSk stands for a doublet ofscalars.
Now to obtain the final soldered Lagrangian, we have to sum over all the modes

(Ls =∑Lsk), as we did for the scalar case (3.6). This yields

Ls = −1

4

∫
d3x Gα

µνG
αµν (4.14a)

where

Gα
µν = ∂µAαν − ∂νAαµ (4.14b)

is a doublet of abelian field strengths(α = 1, 2). This is the same result as that obtained in
[7]. We have thus been able to provide a second derivation of (4.14) by starting from the basic
HO example.

Alternatively, introducing a doublet of a divergence free vector field

S(x) = 1√
V

∑
eik·xSk(t) (4.15)

one can also castLs in the pattern of scalar fields (3.7) as

Ls = 1

2

∫
d3x ∂µS(x)∂

µS(x). (4.16)

Again, the only difference with (3.7) is that theS(x) appearing there is a doublet of scalar
fields, in contrast to the case here, whereS(x) is a doublet of vector fields.

The reason that the soldered Lagrangian for electrodynamics can be cast in the form of
scalars is rooted to the fact that, at the level of modes, both electrodynamics and scalar theory
represent an infinite number of decoupled HOs. The only additional feature of the former is
that to each modek, there exist two orthogonal HOs associated with two polarization states.

4.1. Comparison with conventional duality symmetry

One may have observed that the entire discussion of duality symmetry for the Maxwell theory
did not invoke the standard form of the Lagrangian [2, 7, 12]

L± = 1
2(±εαβEα ·Bβ −Bα ·Bα) (4.17a)

where

Eiα = ∂0Aiα − ∂iA0α
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and

Biα = εijk∂jAkα (4.17b)

represent the electric and magnetic fields in the internal space. This is further simplified to

L = 1
2(εαβȦα ·Bβ −Bα ·Bα) (4.18)

since theA0 piece merely contributes a boundary term. The above form of the duality invariant
Lagrangian was obtained in various ways [2, 7, 17] and has also been the starting point of several
recent investigations [13–16]. It is therefore desirable to establish some sort of connection
of our analysis with this structure. Note that we are only considering the positive ‘chiral’
component of (4.17) here.

Performing a mode analysis of (4.18), we obtain, for the LagrangianL(= ∫ d3x L)

L =
∑
k

Lk (4.19a)

where

Lk = 1
2(εαβȦ

∗
αk ·Bβk −B∗αk ·Bαk). (4.19b)

Using (4.17b) and the fact that only the transverse components of the fields are relevant, one
finds the following relations:

B1k = ik ×A1k B2k = ωkΠk A2k = i

ωk
k ×Πk = i

ω2
k

k ×B2k. (4.20)

Inserting these in (4.19) yields

Lk = 1
2ωk(Π

∗
k · Ȧ1k + Πk · Ȧ∗1k)− 1

2ω
2
k(Π

∗
k ·Πk +A∗1k ·A1k) (4.21)

which reproduces (4.9). This shows the equivalence of the duality invariant Maxwell action
derived here with the conventional form.

Let us now consider the generators of the duality transformation. First, the conventional
duality transformation

δAα = θεαβAβ (4.22)

for angleθ , as applied to the Lagrangian (4.18) will be discussed. Note that, we have suppressed
the mode indexk for the time being. An application of Noether’s theorem yields the generator

G = 1
2A
∗
αBα (4.23)

which has the desired Chern–Simons form in the momentum space. To check explicitly
thatG generates the transformation (4.22), use of the symplectic brackets following from a
constrained analysis of (4.18),

{Aαi, A∗βj } = −2iεαβεij l
kl

k2
(4.24)

is made. Using (4.23) and (4.24), it follows that

δAαi = θ{Aαi,G} = θεαβAβi (4.25)

as desired.
Let us next consider the oscillator-like structure (4.10), which may be re-expressed as

L = 1
2ωεαβq

∗
αi q̇βi − 1

2ω
2q∗αiqαi . (4.26)

As discussed in the HO case, this is invariant under the duality transformation,

δ0qαi = θεαβqβi (4.27)
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whereδ0 has been used instead ofδ to indicate that these operations are in distinct spaces. To
repeat,δ involves a transformation in the potential

(
A1

A2

)
space, whileδ0 involves a transformation

in the
(
A
Π

) = (q1

q2

)
space. We shall subsequently derive an exact relation betweenδ andδ0.

The fundamental symplectic structure in this first-order Lagrangian (4.26) can be easily
read. This is given by the brackets

{qαi, q∗βj } = −
2

ω
εαβ

(
δij − kikj

k2

)
. (4.28)

Note the similarity with the algebra (2.6) found earlier in the HO case. The only distingushing
feature is the presence of thetransverseKronecker delta in place of the ordinary Kronecker
delta to account for the transversality condition

kiqαi = kiq∗αi = 0. (4.29)

Using the brackets (4.28), it is quite trivial to show that the form of the generator

G0 = −ω
2
q∗αiqαi (4.30)

obtained by using Noether’s prescription, indeed generates the appropriate transforma-
tion (4.27).

To connectδ andδ0, recall that (4.22) implies

δBα = θεαβBβ (4.31)

whereBα = ik ×Aα in thek-space. From the identifications (4.20), it transpires that

δΠ = − θ
ω
B1 = − iθ

ω
(k ×A1) δA = δA1 = θA2 = iθ

ω
(k ×Π). (4.31)

Combining the above two equations in (4.31), one gets

δ

(
Π
A

)
= − i

ω
k ×

(
θA

−θ5
)
= − i

ω
k × δ0

(
Π
A

)
. (4.32)

From where it follows that

δ = − i

ω
k × δ0. (4.33)

This is the cherished relation between the duality transformations in the two distinct spaces.

5. Kalb–Ramond theory in six dimensions

The action is given by

S = 1

12

∫
d6x tr(FF) (5.1)

whereF is the field 3-form

F = 1

3!
Fµνλ dxµ ∧ dxν ∧ dxλ. (5.2)

In terms of the electric and magnetic fields

Eij = F0ij Bij = 1

3!
εijklmFklm (5.3)

the Lagrangian takes the form

L = 1

2

∫
d5x (E〈ij〉E〈ij〉 − B〈ij〉B〈ij〉). (5.4)
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Here〈ij〉 indicates a certain ordering for the spatial indicesij . Let us use only the ascending
order. So the summation over the spatial indices in (5.4) has to be carried out with an ascending
order of these indices. A canonical analysis leads to the Hamiltonian

H = 1

2

∫
d5x (E〈ij〉E〈ij〉 +B〈ij〉B〈ij〉 +A0i∂jπij ) (5.5)

whereπµν is the momenta canonically conjugate toAµν :

π〈ij〉 = δL

δȦ〈ij〉
= E〈ij〉 π0i = δL

δȦ0i
= 0. (5.6)

ClearlyA0i plays the role of a Lagrange multiplier enforcing the Gauss constraint

Gi = ∂jπij ≈ 0. (5.7)

This Gauss constraint subjected to a Coulomb-like gauge

∂jAij = 0 (5.8)

simplifies to,

∇2A0i = ∂i∂jA0j . (5.9)

A general solution of (5.9) is

A0i = ∂if (5.10)

where f (x) is an arbitrary differentiable function. Exploiting the freedom in the time-
independent gauge transformation onA0i , the solution of (5.10) is gauge equivalent to the
trivial solution

A0i = 0. (5.11)

The Lagrangian (5.4), therefore reduces to

L = 1

2

∫
d5x (Ȧ2

〈ij〉 − B2
〈ij〉). (5.12)

As before, the above Lagrangian is linearized by introducing auxilliary variables

L = 1

2

∫
d5x ([P〈ij〉Ȧ〈ij〉 − Ṗ〈ij〉A〈ij〉] − [P 2

〈ij〉 +B
2
〈ij〉]). (5.13)

Again, as before, we can introduce dual (F̃ ) of the field (F ) 3-form (5.2) and expressPij in
terms of thisF̃ as

Pij = 1

3!
εijklmF̃klm. (5.14)

On the other hand, the equation of motion implies

dF̃ = 0. (5.15)

Again this closure ofF̃ allows one to introduce another 2-form potentialÃ

F̃ = dÃ (5.16)

as an on-shell relation. Next, introducing a renaming of variables

Aij = A(1)ij (5.17a)

Ãij = A(2)ij (5.17b)

Bij = B(1)ij (5.17c)

Pij = B(2)ij (5.17d)
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we obtain the desired form of the Lagrangian

L = 1

2

∫
d5x [B(α)〈ij〉σ

1
αβȦ

(β)

〈ij〉 − B(α)〈ij〉B(α)〈ij〉] (5.18)

which obviously has the desiredZ2 symmetry.
After exposing the conventional duality symmetry in the space of potentials, we now

consider the alternative form obtained by first Fourier decomposingAij ,

Aij (x, t) = 1√
V

∑
k

eik·xAij (k, t). (5.19)

Imposing the transversality (gauge) condition

Ci = kjAij (k) = 0 (5.20)

it is found that the original Lagrangian (5.4) may be recast as

L = 1

2

∑
k

[Ȧ∗〈ij〉(k)A〈ij〉(k)− ω2
kA
∗
〈ij〉(k)A

∗
〈ij〉(k)]. (5.21)

This clearly represents an assembly of HO, constrained by (5.20). Like Maxwell’s case this
too is a reducible system, askiCi = 0. As before, by suitable reparametrizations, bothZ2 and
SO(2) duality symmetries can be manifested from (5.21). Consider theSO(2) case first. The
form of the Lagrangian (5.21) can be linearized as

Lk = 1
2ωk(5

∗
〈ij〉(k) · Ȧ〈ij〉(k) +5〈ij〉(k) · Ȧ〈ij〉(k)∗)
− 1

2ω
2
k(5

∗
〈ij〉(k) ·5〈ij〉(k) +A∗〈ij〉(k) · A〈ij〉(k)). (5.22)

Then relabellingq1〈ij〉 = π〈ij〉 andq2〈ij〉 = A〈ij〉 and then again in the reverse order, one gets
the following chiral forms of the Lagrangian

Lk±(Q) = ± 1
2ωkQ

†
〈ij〉ε · Q̇〈ij〉 − 1

2ω
2
kQ

†
〈ij〉 ·Q〈ij〉 (5.23)

whereQ〈ij〉 =
(
q1〈ij〉
q2〈ij〉

)
. Clearly this has the requisiteSO(2) symmetry. The corresponding

generator, obtained by using Noether’s prescription, is given by

G = −ω
2
Q†
〈ij〉Q〈ij〉. (5.24)

To reveal theZ2 symmetry, one has to parametrize

81〈ij〉 = A〈ij〉 (5.25a)

along with

82〈ij〉 = −i5〈ij〉 (5.25b)

and then in the reverse order. With this the above expression of the Lagrangian (5.21) takes
the form

Lk± = 1
2(±iωk8̇

†
〈ij〉σ

18〈ij〉 − ω2
k8

†
〈ij〉8〈ij〉) (5.26)

with8〈ij〉 =
(
81〈ij〉
82〈ij〉

)
. This clearly has the requisiteZ2 symmetry, rather thanSO(2) symmetry.

A generalization to higher-order abelianN -form fields is quite straightforward.
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6. Conclusions

This paper showed that duality symmetry in certain free-field theories had their origin in a
similar symmetry in a quantum mechanical example—the ‘complex’ harmonic oscillator (HO).
Our analysis has revealed that the study of duality symmetries in the HO case is fundamental
to properly understand the corresponding phenemenon in the field-theoretic case, at least for
the models considered in this paper. Indeed by performing an explicit mode analysis, the free
scalar, Maxwell and Kalb–Ramond theories were mapped to the complex HO. The one-to-
one correspondence between duality symmetry in the HO and the field theories was easily
established.

An algebraic consistency check was also provided for the mode analysis. This was done
by taking recourse to the soldering mechanism that was earlier advocated by one of us [7].
It was shown that the soldering of duality symmetric Lagrangians (L+ andL−) before the
mode decomposition yields identical results by, alternately, first doing a mode analysis of the
individual Lagrangians, then soldering the various modes and finally summing over all the
modes. This has been depicted pictorially in a figure.

To understand the new feature in this paper it is necessary to recall the development of
duality symmetry. Originally, by considering the transformations on the electric and magnetic
fields, an invariance of the equations of motion was found although the Lagrangian flipped its
sign. In fact, as shown here, this duality is obtained directly from the algebraic transformation
theory and need not consider any equations of motion. Obviously, therefore, it was necessary
to look at the invariance of the action. Moreover, since the electric and magnetic fields are
derived quantities from the potential, it was reasonable to study duality symmetry through
these potentials. Simultaneously this brought out a new feature, namely, the invariance of
the action itself. Nevertheless, a distinction between twice-odd and twice-even dimensions
prevailed since the duality groups in the two cases differed. By pushing this development to
its logical conclusion of considering the potential not as a basic field, but as a quantity derived
from its Fourier modes, and then investigating duality symmetry through these modes, we
obtained new results. The invariance of the action has been demonstrated for both the duality
groupsZ2 andSO(2), irrespective of the dimensionality of space time. By suitable variable
redefinitions it was possible to discuss the role of eitherZ2 or SO(2) as a duality group in all
the models. The germ of this feature was obviously contained in the HO, which displayed both
the symmetries depending on the change of variables. It should be stressed that the duality
symmetry discussed here is among the mode amplitudes and hence distinct from the usual
analysis which considers the potentials. Indeed the explicit relation between the infinitesimal
continuous duality transformations as analysed here and the conventional one was derived for
the Maxwell theory. Moreover it should be stressed that the duality symmetry (bothSO(2)
andZ2) in the Fourier modes holds for any model, irrespective of dimensionality, provided
the system represents an assembly of decoupled (complex) harmonic oscillators. Then, for
example, a scalar field in four dimensions, which does not display any duality symmetry in
the configuration space, will still exhibit an analogous symmetry in the momentum space. We
feel that this analysis of duality symmetry through a mode expansion can be pursued for other
examples.
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